Skip to content

Unit 8 Test Evolution Early Earth And Classification Essay

The evidence for evolution

Darwin and other 19th-century biologists found compelling evidence for biological evolution in the comparative study of living organisms, in their geographic distribution, and in the fossil remains of extinct organisms. Since Darwin’s time, the evidence from these sources has become considerably stronger and more comprehensive, while biological disciplines that emerged more recently—genetics, biochemistry, physiology, ecology, animal behaviour (ethology), and especially molecular biology—have supplied powerful additional evidence and detailed confirmation. The amount of information about evolutionary history stored in the DNA and proteins of living things is virtually unlimited; scientists can reconstruct any detail of the evolutionary history of life by investing sufficient time and laboratory resources.

Evolutionists no longer are concerned with obtaining evidence to support the fact of evolution but rather are concerned with what sorts of knowledge can be obtained from different sources of evidence. The following sections identify the most productive of these sources and illustrate the types of information they have provided.

The fossil record

Paleontologists have recovered and studied the fossil remains of many thousands of organisms that lived in the past. This fossil record shows that many kinds of extinct organisms were very different in form from any now living. It also shows successions of organisms through time (seefaunal succession, law of; geochronology: Determining the relationships of fossils with rock strata), manifesting their transition from one form to another.

When an organism dies, it is usually destroyed by other forms of life and by weathering processes. On rare occasions some body parts—particularly hard ones such as shells, teeth, or bones—are preserved by being buried in mud or protected in some other way from predators and weather. Eventually, they may become petrified and preserved indefinitely with the rocks in which they are embedded. Methods such as radiometric dating—measuring the amounts of natural radioactive atoms that remain in certain minerals to determine the elapsed time since they were constituted—make it possible to estimate the time period when the rocks, and the fossils associated with them, were formed.

Radiometric dating indicates that Earth was formed about 4.5 billion years ago. The earliest fossils resemble microorganisms such as bacteria and cyanobacteria (blue-green algae); the oldest of these fossils appear in rocks 3.5 billion years old (seePrecambrian time). The oldest known animal fossils, about 700 million years old, come from the so-called Ediacara fauna, small wormlike creatures with soft bodies. Numerous fossils belonging to many living phyla and exhibiting mineralized skeletons appear in rocks about 540 million years old. These organisms are different from organisms living now and from those living at intervening times. Some are so radically different that paleontologists have created new phyla in order to classify them. (SeeCambrian Period.) The first vertebrates, animals with backbones, appeared about 400 million years ago; the first mammals, less than 200 million years ago. The history of life recorded by fossils presents compelling evidence of evolution.

The fossil record is incomplete. Of the small proportion of organisms preserved as fossils, only a tiny fraction have been recovered and studied by paleontologists. In some cases the succession of forms over time has been reconstructed in detail. One example is the evolution of the horse. The horse can be traced to an animal the size of a dog having several toes on each foot and teeth appropriate for browsing; this animal, called the dawn horse (genus Hyracotherium), lived more than 50 million years ago. The most recent form, the modern horse (Equus), is much larger in size, is one-toed, and has teeth appropriate for grazing. The transitional forms are well preserved as fossils, as are many other kinds of extinct horses that evolved in different directions and left no living descendants.

Using recovered fossils, paleontologists have reconstructed examples of radical evolutionary transitions in form and function. For example, the lower jaw of reptiles contains several bones, but that of mammals only one. The other bones in the reptile jaw unmistakably evolved into bones now found in the mammalian ear. At first, such a transition would seem unlikely—it is hard to imagine what function such bones could have had during their intermediate stages. Yet paleontologists discovered two transitional forms of mammal-like reptiles, called therapsids, that had a double jaw joint (i.e., two hinge points side by side)—one joint consisting of the bones that persist in the mammalian jaw and the other composed of the quadrate and articular bones, which eventually became the hammer and anvil of the mammalian ear. (See alsomammal: Skeleton.)

For skeptical contemporaries of Darwin, the “missing link”—the absence of any known transitional form between apes and humans—was a battle cry, as it remained for uninformed people afterward. Not one but many creatures intermediate between living apes and humans have since been found as fossils. The oldest known fossil hominins—i.e., primates belonging to the human lineage after it separated from lineages going to the apes—are 6 million to 7 million years old, come from Africa, and are known as Sahelanthropus and Orrorin (or Praeanthropus), which were predominantly bipedal when on the ground but which had very small brains. Ardipithecus lived about 4.4 million years ago, also in Africa. Numerous fossil remains from diverse African origins are known of Australopithecus, a hominin that appeared between 3 million and 4 million years ago. Australopithecus had an upright human stance but a cranial capacity of less than 500 cc (equivalent to a brain weight of about 500 grams), comparable to that of a gorilla or a chimpanzee and about one-third that of humans. Its head displayed a mixture of ape and human characteristics—a low forehead and a long, apelike face but with teeth proportioned like those of humans. Other early hominins partly contemporaneous with Australopithecus include Kenyanthropus and Paranthropus; both had comparatively small brains, although some species of Paranthropus had larger bodies. Paranthropus represents a side branch in the hominin lineage that became extinct. Along with increased cranial capacity, other human characteristics have been found in Homo habilis, which lived about 1.5 million to 2 million years ago in Africa and had a cranial capacity of more than 600 cc (brain weight of 600 grams), and in H. erectus, which lived between 0.5 million and more than 1.5 million years ago, apparently ranged widely over Africa, Asia, and Europe, and had a cranial capacity of 800 to 1,100 cc (brain weight of 800 to 1,100 grams). The brain sizes of H. ergaster, H. antecessor, and H. heidelbergensis were roughly that of the brain of H. erectus, some of which species were partly contemporaneous, though they lived in different regions of the Eastern Hemisphere. (See alsohuman evolution.)

Structural similarities

The skeletons of turtles, horses, humans, birds, and bats are strikingly similar, in spite of the different ways of life of these animals and the diversity of their environments. The correspondence, bone by bone, can easily be seen not only in the limbs but also in every other part of the body. From a purely practical point of view, it is incomprehensible that a turtle should swim, a horse run, a person write, and a bird or a bat fly with forelimb structures built of the same bones. An engineer could design better limbs in each case. But if it is accepted that all of these skeletons inherited their structures from a common ancestor and became modified only as they adapted to different ways of life, the similarity of their structures makes sense.

Comparative anatomy investigates the homologies, or inherited similarities, among organisms in bone structure and in other parts of the body. The correspondence of structures is typically very close among some organisms—the different varieties of songbirds, for instance—but becomes less so as the organisms being compared are less closely related in their evolutionary history. The similarities are less between mammals and birds than they are among mammals, and they are still less between mammals and fishes. Similarities in structure, therefore, not only manifest evolution but also help to reconstruct the phylogeny, or evolutionary history, of organisms.

Comparative anatomy also reveals why most organismic structures are not perfect. Like the forelimbs of turtles, horses, humans, birds, and bats, an organism’s body parts are less than perfectly adapted because they are modified from an inherited structure rather than designed from completely “raw” materials for a specific purpose. The imperfection of structures is evidence for evolution and against antievolutionist arguments that invoke intelligent design (see belowIntelligent design and its critics).

Embryonic development and vestiges

Darwin and his followers found support for evolution in the study of embryology, the science that investigates the development of organisms from fertilized egg to time of birth or hatching. Vertebrates, from fishes through lizards to humans, develop in ways that are remarkably similar during early stages, but they become more and more differentiated as the embryos approach maturity. The similarities persist longer between organisms that are more closely related (e.g., humans and monkeys) than between those less closely related (humans and sharks). Common developmental patterns reflect evolutionary kinship. Lizards and humans share a developmental pattern inherited from their remote common ancestor; the inherited pattern of each was modified only as the separate descendant lineages evolved in different directions. The common embryonic stages of the two creatures reflect the constraints imposed by this common inheritance, which prevents changes that have not been necessitated by their diverging environments and ways of life.

The embryos of humans and other nonaquatic vertebrates exhibit gill slits even though they never breathe through gills. These slits are found in the embryos of all vertebrates because they share as common ancestors the fish in which these structures first evolved. Human embryos also exhibit by the fourth week of development a well-defined tail, which reaches maximum length at six weeks. Similar embryonic tails are found in other mammals, such as dogs, horses, and monkeys; in humans, however, the tail eventually shortens, persisting only as a rudiment in the adult coccyx.

A close evolutionary relationship between organisms that appear drastically different as adults can sometimes be recognized by their embryonic homologies. Barnacles, for example, are sedentary crustaceans with little apparent likeness to such free-swimming crustaceans as lobsters, shrimps, or copepods. Yet barnacles pass through a free-swimming larval stage, the nauplius, which is unmistakably similar to that of other crustacean larvae.

Embryonic rudiments that never fully develop, such as the gill slits in humans, are common in all sorts of animals. Some, however, like the tail rudiment in humans, persist as adult vestiges, reflecting evolutionary ancestry. The most familiar rudimentaryorgan in humans is the vermiform appendix. This wormlike structure attaches to a short section of intestine called the cecum, which is located at the point where the large and small intestines join. The human vermiform appendix is a functionless vestige of a fully developed organ present in other mammals, such as the rabbit and other herbivores, where a large cecum and appendix store vegetable cellulose to enable its digestion with the help of bacteria. Vestiges are instances of imperfections—like the imperfections seen in anatomical structures—that argue against creation by design but are fully understandable as a result of evolution.

Biogeography

Darwin also saw a confirmation of evolution in the geographic distribution of plants and animals, and later knowledge has reinforced his observations. For example, there are about 1,500 known species of Drosophilavinegar flies in the world; nearly one-third of them live in Hawaii and nowhere else, although the total area of the archipelago is less than one-twentieth the area of California or Germany. Also in Hawaii are more than 1,000 species of snails and other land mollusks that exist nowhere else. This unusual diversity is easily explained by evolution. The islands of Hawaii are extremely isolated and have had few colonizers—i.e, animals and plants that arrived there from elsewhere and established populations. Those species that did colonize the islands found many unoccupied ecological niches, local environments suited to sustaining them and lacking predators that would prevent them from multiplying. In response, these species rapidly diversified; this process of diversifying in order to fill ecological niches is called adaptive radiation.

Each of the world’s continents has its own distinctive collection of animals and plants. In Africa are rhinoceroses, hippopotamuses, lions, hyenas, giraffes, zebras, lemurs, monkeys with narrow noses and nonprehensile tails, chimpanzees, and gorillas. South America, which extends over much the same latitudes as Africa, has none of these animals; it instead has pumas, jaguars, tapir, llamas, raccoons, opossums, armadillos, and monkeys with broad noses and large prehensile tails.

These vagaries of biogeography are not due solely to the suitability of the different environments. There is no reason to believe that South American animals are not well suited to living in Africa or those of Africa to living in South America. The islands of Hawaii are no better suited than other Pacific islands for vinegar flies, nor are they less hospitable than other parts of the world for many absent organisms. In fact, although no large mammals are native to the Hawaiian islands, pigs and goats have multiplied there as wild animals since being introduced by humans. This absence of many species from a hospitable environment in which an extraordinary variety of other species flourish can be explained by the theory of evolution, which holds that species can exist and evolve only in geographic areas that were colonized by their ancestors.

Molecular biology

The field of molecular biology provides the most detailed and convincing evidence available for biological evolution. In its unveiling of the nature of DNA and the workings of organisms at the level of enzymes and other protein molecules, it has shown that these molecules hold information about an organism’s ancestry. This has made it possible to reconstruct evolutionary events that were previously unknown and to confirm and adjust the view of events already known. The precision with which these events can be reconstructed is one reason the evidence from molecular biology is so compelling. Another reason is that molecular evolution has shown all living organisms, from bacteria to humans, to be related by descent from common ancestors.

A remarkable uniformity exists in the molecular components of organisms—in the nature of the components as well as in the ways in which they are assembled and used. In all bacteria, plants, animals, and humans, the DNA comprises a different sequence of the same four component nucleotides, and all the various proteins are synthesized from different combinations and sequences of the same 20 amino acids, although several hundred other amino acids do exist. The genetic code by which the information contained in the DNA of the cellnucleus is passed on to proteins is virtually everywhere the same. Similar metabolic pathways—sequences of biochemical reactions (seemetabolism)—are used by the most diverse organisms to produce energy and to make up the cell components.

This unity reveals the genetic continuity and common ancestry of all organisms. There is no other rational way to account for their molecular uniformity when numerous alternative structures are equally likely. The genetic code serves as an example. Each particular sequence of three nucleotides in the nuclear DNA acts as a pattern for the production of exactly the same amino acid in all organisms. This is no more necessary than it is for a language to use a particular combination of letters to represent a particular object. If it is found that certain sequences of letters—planet, tree, woman—are used with identical meanings in a number of different books, one can be sure that the languages used in those books are of common origin.

Genes and proteins are long molecules that contain information in the sequence of their components in much the same way as sentences of the English language contain information in the sequence of their letters and words. The sequences that make up the genes are passed on from parents to offspring and are identical except for occasional changes introduced by mutations. As an illustration, one may assume that two books are being compared. Both books are 200 pages long and contain the same number of chapters. Closer examination reveals that the two books are identical page for page and word for word, except that an occasional word—say, one in 100—is different. The two books cannot have been written independently; either one has been copied from the other, or both have been copied, directly or indirectly, from the same original book. Similarly, if each component nucleotide of DNA is represented by one letter, the complete sequence of nucleotides in the DNA of a higher organism would require several hundred books of hundreds of pages, with several thousand letters on each page. When the “pages” (or sequences of nucleotides) in these “books” (organisms) are examined one by one, the correspondence in the “letters” (nucleotides) gives unmistakable evidence of common origin.

The two arguments presented above are based on different grounds, although both attest to evolution. Using the alphabet analogy, the first argument says that languages that use the same dictionary—the same genetic code and the same 20 amino acids—cannot be of independent origin. The second argument, concerning similarity in the sequence of nucleotides in the DNA (and thus the sequence of amino acids in the proteins), says that books with very similar texts cannot be of independent origin.

The evidence of evolution revealed by molecular biology goes even farther. The degree of similarity in the sequence of nucleotides or of amino acids can be precisely quantified. For example, in humans and chimpanzees, the protein molecule called cytochrome c, which serves a vital function in respiration within cells, consists of the same 104 amino acids in exactly the same order. It differs, however, from the cytochrome c of rhesus monkeys by 1 amino acid, from that of horses by 11 additional amino acids, and from that of tuna by 21 additional amino acids. The degree of similarity reflects the recency of common ancestry. Thus, the inferences from comparative anatomy and other disciplines concerning evolutionary history can be tested in molecular studies of DNA and proteins by examining their sequences of nucleotides and amino acids. (See belowDNA and protein as informational macromolecules.)

The authority of this kind of test is overwhelming; each of the thousands of genes and thousands of proteins contained in an organism provides an independent test of that organism’s evolutionary history. Not all possible tests have been performed, but many hundreds have been done, and not one has given evidence contrary to evolution. There is probably no other notion in any field of science that has been as extensively tested and as thoroughly corroborated as the evolutionary origin of living organisms.

History of evolutionary theory

Early ideas

All human cultures have developed their own explanations for the origin of the world and of human beings and other creatures. Traditional Judaism and Christianity explain the origin of living beings and their adaptations to their environments—wings, gills, hands, flowers—as the handiwork of an omniscient God. The philosophers of ancient Greece had their own creation myths. Anaximander proposed that animals could be transformed from one kind into another, and Empedocles speculated that they were made up of various combinations of preexisting parts. Closer to modern evolutionary ideas were the proposals of early Church Fathers such as Gregory of Nazianzus and Augustine, both of whom maintained that not all species of plants and animals were created by God; rather, some had developed in historical times from God’s creations. Their motivation was not biological but religious—it would have been impossible to hold representatives of all species in a single vessel such as Noah’s Ark; hence, some species must have come into existence only after the Flood.

The notion that organisms may change by natural processes was not investigated as a biological subject by Christian theologians of the Middle Ages, but it was, usually incidentally, considered as a possibility by many, including Albertus Magnus and his student Thomas Aquinas. Aquinas concluded, after detailed discussion, that the development of living creatures such as maggots and flies from nonliving matter such as decaying meat was not incompatible with Christian faith or philosophy. But he left it to others to determine whether this actually happened.

The idea of progress, particularly the belief in unbounded human progress, was central to the Enlightenment of the 18th century, particularly in France among such philosophers as the marquis de Condorcet and Denis Diderot and such scientists as Georges-Louis Leclerc, comte de Buffon. But belief in progress did not necessarily lead to the development of a theory of evolution. Pierre-Louis Moreau de Maupertuis proposed the spontaneous generation and extinction of organisms as part of his theory of origins, but he advanced no theory of evolution—i.e., the transformation of one species into another through knowable, natural causes. Buffon, one of the greatest naturalists of the time, explicitly considered—and rejected—the possible descent of several species from a common ancestor. He postulated that organisms arise from organic molecules by spontaneous generation, so that there could be as many kinds of animals and plants as there are viable combinations of organic molecules.

The English physician Erasmus Darwin, grandfather of Charles Darwin, offered in his Zoonomia; or, The Laws of Organic Life (1794–96) some evolutionary speculations, but they were not further developed and had no real influence on subsequent theories. The Swedish botanist Carolus Linnaeus devised the hierarchical system of plant and animal classification that is still in use in a modernized form. Although he insisted on the fixity of species, his classification system eventually contributed much to the acceptance of the concept of common descent.

The great French naturalist Jean-Baptiste de Monet, chevalier de Lamarck, held the enlightened view of his age that living organisms represent a progression, with humans as the highest form. From this idea he proposed, in the early years of the 19th century, the first broad theory of evolution. Organisms evolve through eons of time from lower to higher forms, a process still going on, always culminating in human beings. As organisms become adapted to their environments through their habits, modifications occur. Use of an organ or structure reinforces it; disuse leads to obliteration. The characteristics acquired by use and disuse, according to this theory, would be inherited. This assumption, later called the inheritance of acquired characteristics (or Lamarckism), was thoroughly disproved in the 20th century. Although his theory did not stand up in the light of later knowledge, Lamarck made important contributions to the gradual acceptance of biological evolution and stimulated countless later studies.

Charles Darwin

The founder of the modern theory of evolution was Charles Darwin. The son and grandson of physicians, he enrolled as a medical student at the University of Edinburgh. After two years, however, he left to study at the University of Cambridge and prepare to become a clergyman. He was not an exceptional student, but he was deeply interested in natural history. On December 27, 1831, a few months after his graduation from Cambridge, he sailed as a naturalist aboard the HMS Beagle on a round-the-world trip that lasted until October 1836. Darwin was often able to disembark for extended trips ashore to collect natural specimens.

The discovery of fossil bones from large extinct mammals in Argentina and the observation of numerous species of finches in the Galapagos Islands were among the events credited with stimulating Darwin’s interest in how species originate. In 1859 he published On the Origin of Species by Means of Natural Selection, a treatise establishing the theory of evolution and, most important, the role of natural selection in determining its course. He published many other books as well, notably The Descent of Man and Selection in Relation to Sex (1871), which extends the theory of natural selection to human evolution.

Darwin must be seen as a great intellectual revolutionary who inaugurated a new era in the cultural history of humankind, an era that was the second and final stage of the Copernican revolution that had begun in the 16th and 17th centuries under the leadership of men such as Nicolaus Copernicus, Galileo, and Isaac Newton. The Copernican revolution marked the beginnings of modern science. Discoveries in astronomy and physics overturned traditional conceptions of the universe. Earth no longer was seen as the centre of the universe but was seen as a small planet revolving around one of myriad stars; the seasons and the rains that make crops grow, as well as destructive storms and other vagaries of weather, became understood as aspects of natural processes; the revolutions of the planets were now explained by simple laws that also accounted for the motion of projectiles on Earth.

The significance of these and other discoveries was that they led to a conception of the universe as a system of matter in motion governed by laws of nature. The workings of the universe no longer needed to be attributed to the ineffable will of a divine Creator; rather, they were brought into the realm of science—an explanation of phenomena through natural laws. Physical phenomena such as tides, eclipses, and positions of the planets could now be predicted whenever the causes were adequately known. Darwin accumulated evidence showing that evolution had occurred, that diverse organisms share common ancestors, and that living beings have changed drastically over the course of Earth’s history. More important, however, he extended to the living world the idea of nature as a system of matter in motion governed by natural laws.

Before Darwin, the origin of Earth’s living things, with their marvelous contrivances for adaptation, had been attributed to the design of an omniscient God. He had created the fish in the waters, the birds in the air, and all sorts of animals and plants on the land. God had endowed these creatures with gills for breathing, wings for flying, and eyes for seeing, and he had coloured birds and flowers so that human beings could enjoy them and recognize God’s wisdom. Christian theologians, from Aquinas on, had argued that the presence of design, so evident in living beings, demonstrates the existence of a supreme Creator; the argument from design was Aquinas’s “fifth way” for proving the existence of God. In 19th-century England the eight Bridgewater Treatises were commissioned so that eminent scientists and philosophers would expand on the marvels of the natural world and thereby set forth “the Power, wisdom, and goodness of God as manifested in the Creation.”

The British theologian William Paley in his Natural Theology (1802) used natural history, physiology, and other contemporary knowledge to elaborate the argument from design. If a person should find a watch, even in an uninhabited desert, Paley contended, the harmony of its many parts would force him to conclude that it had been created by a skilled watchmaker; and, Paley went on, how much more intricate and perfect in design is the human eye, with its transparent lens, its retina placed at the precise distance for forming a distinct image, and its large nerve transmitting signals to the brain.

The argument from design seems to be forceful. A ladder is made for climbing, a knife for cutting, and a watch for telling time; their functional design leads to the conclusion that they have been fashioned by a carpenter, a smith, or a watchmaker. Similarly, the obvious functional design of animals and plants seems to denote the work of a Creator. It was Darwin’s genius that he provided a natural explanation for the organization and functional design of living beings. (For additional discussion of the argument from design and its revival in the 1990s, see belowIntelligent design and its critics.)

Darwin accepted the facts of adaptation—hands are for grasping, eyes for seeing, lungs for breathing. But he showed that the multiplicity of plants and animals, with their exquisite and varied adaptations, could be explained by a process of natural selection, without recourse to a Creator or any designer agent. This achievement would prove to have intellectual and cultural implications more profound and lasting than his multipronged evidence that convinced contemporaries of the fact of evolution.

Darwin’s theory of natural selection is summarized in the Origin of Species as follows:

As many more individuals are produced than can possibly survive, there must in every case be a struggle for existence, either one individual with another of the same species, or with the individuals of distinct species, or with the physical conditions of life.…Can it, then, be thought improbable, seeing that variations useful to man have undoubtedly occurred, that other variations useful in some way to each being in the great and complex battle of life, should sometimes occur in the course of thousands of generations? If such do occur, can we doubt (remembering that many more individuals are born than can possibly survive) that individuals having any advantage, however slight, over others, would have the best chance of surviving and of procreating their kind? On the other hand, we may feel sure that any variation in the least degree injurious would be rigidly destroyed. This preservation of favourable variations and the rejection of injurious variations, I call Natural Selection.

Natural selection was proposed by Darwin primarily to account for the adaptive organization of living beings; it is a process that promotes or maintains adaptation. Evolutionary change through time and evolutionary diversification (multiplication of species) are not directly promoted by natural selection, but they often ensue as by-products of natural selection as it fosters adaptation to different environments.

Modern conceptions

The Darwinian aftermath

The publication of the Origin of Species produced considerable public excitement. Scientists, politicians, clergymen, and notables of all kinds read and discussed the book, defending or deriding Darwin’s ideas. The most visible actor in the controversies immediately following publication was the English biologist T.H. Huxley, known as “Darwin’s bulldog,” who defended the theory of evolution with articulate and sometimes mordant words on public occasions as well as in numerous writings. Evolution by natural selection was indeed a favourite topic in society salons during the 1860s and beyond. But serious scientific controversies also arose, first in Britain and then on the Continent and in the United States.

One occasional participant in the discussion was the British naturalist Alfred Russel Wallace, who had hit upon the idea of natural selection independently and had sent a short manuscript about it to Darwin from the Malay Archipelago, where he was collecting specimens and writing. On July 1, 1858, one year before the publication of the Origin, a paper jointly authored by Wallace and Darwin was presented, in the absence of both, to the Linnean Society in London—with apparently little notice. Greater credit is duly given to Darwin than to Wallace for the idea of evolution by natural selection; Darwin developed the theory in considerably more detail, provided far more evidence for it, and was primarily responsible for its acceptance. Wallace’s views differed from Darwin’s in several ways, most importantly in that Wallace did not think natural selection sufficient to account for the origin of human beings, which in his view required direct divine intervention.

A younger English contemporary of Darwin, with considerable influence during the latter part of the 19th and in the early 20th century, was Herbert Spencer. A philosopher rather than a biologist, he became an energetic proponent of evolutionary ideas, popularized a number of slogans, such as “survival of the fittest” (which was taken up by Darwin in later editions of the Origin), and engaged in social and metaphysical speculations. His ideas considerably damaged proper understanding and acceptance of the theory of evolution by natural selection. Darwin wrote of Spencer’s speculations:

His deductive manner of treating any subject is wholly opposed to my frame of mind.…His fundamental generalizations (which have been compared in importance by some persons with Newton’s laws!) which I dare say may be very valuable under a philosophical point of view, are of such a nature that they do not seem to me to be of any strictly scientific use.

Most pernicious was the crude extension by Spencer and others of the notion of the “struggle for existence” to human economic and social life that became known as social Darwinism (see belowScientific acceptance and extension to other disciplines).

The most serious difficulty facing Darwin’s evolutionary theory was the lack of an adequate theory of inheritance that would account for the preservation through the generations of the variations on which natural selection was supposed to act. Contemporary theories of “blending inheritance” proposed that offspring merely struck an average between the characteristics of their parents. But as Darwin became aware, blending inheritance (including his own theory of “pangenesis,” in which each organ and tissue of an organism throws off tiny contributions of itself that are collected in the sex organs and determine the configuration of the offspring) could not account for the conservation of variations, because differences between variant offspring would be halved each generation, rapidly reducing the original variation to the average of the preexisting characteristics.

The missing link in Darwin’s argument was provided by Mendelian genetics. About the time the Origin of Species was published, the Augustinian monk Gregor Mendel was starting a long series of experiments with peas in the garden of his monastery in Brünn, Austria-Hungary (now Brno, Czech Republic). These experiments and the analysis of their results are by any standard an example of masterly scientific method. Mendel’s paper, published in 1866 in the Proceedings of the Natural Science Society of Brünn, formulated the fundamental principles of the theory of heredity that is still current. His theory accounts for biological inheritance through particulate factors (now known as genes) inherited one from each parent, which do not mix or blend but segregate in the formation of the sex cells, or gametes.

Mendel’s discoveries remained unknown to Darwin, however, and, indeed, they did not become generally known until 1900, when they were simultaneously rediscovered by a number of scientists on the Continent. In the meantime, Darwinism in the latter part of the 19th century faced an alternative evolutionary theory known as neo-Lamarckism. This hypothesis shared with Lamarck’s the importance of use and disuse in the development and obliteration of organs, and it added the notion that the environment acts directly on organic structures, which explained their adaptation to the way of life and environment of the organism. Adherents of this theory discarded natural selection as an explanation for adaptation to the environment.

Prominent among the defenders of natural selection was the German biologist August Weismann, who in the 1880s published his germ plasm theory. He distinguished two substances that make up an organism: the soma, which comprises most body parts and organs, and the germ plasm, which contains the cells that give rise to the gametes and hence to progeny. Early in the development of an egg, the germ plasm becomes segregated from the somatic cells that give rise to the rest of the body. This notion of a radical separation between germ plasm and soma—that is, between the reproductive tissues and all other body tissues—prompted Weismann to assert that inheritance of acquired characteristics was impossible, and it opened the way for his championship of natural selection as the only major process that would account for biological evolution. Weismann’s ideas became known after 1896 as neo-Darwinism.

The synthetic theory

The rediscovery in 1900 of Mendel’s theory of heredity, by the Dutch botanist and geneticist Hugo de Vries and others, led to an emphasis on the role of heredity in evolution. De Vries proposed a new theory of evolution known as mutationism, which essentially did away with natural selection as a major evolutionary process. According to de Vries (who was joined by other geneticists such as William Bateson in England), two kinds of variation take place in organisms. One is the “ordinary” variability observed among individuals of a species, which is of no lasting consequence in evolution because, according to de Vries, it could not “lead to a transgression of the species border [i.e., to establishment of new species] even under conditions of the most stringent and continued selection.” The other consists of the changes brought about by mutations, spontaneous alterations of genes that result in large modifications of the organism and give rise to new species: “The new species thus originates suddenly, it is produced by the existing one without any visible preparation and without transition.”

Mutationism was opposed by many naturalists and in particular by the so-called biometricians, led by the English statistician Karl Pearson, who defended Darwinian natural selection as the major cause of evolution through the cumulative effects of small, continuous, individual variations (which the biometricians assumed passed from one generation to the next without being limited by Mendel’s laws of inheritance [seeMendelism]).

The controversy between mutationists (also referred to at the time as Mendelians) and biometricians approached a resolution in the 1920s and ’30s through the theoretical work of geneticists. These scientists used mathematical arguments to show, first, that continuous variation (in such characteristics as body size, number of eggs laid, and the like) could be explained by Mendel’s laws and, second, that natural selection acting cumulatively on small variations could yield major evolutionary changes in form and function. Distinguished members of this group of theoretical geneticists were R.A. Fisher and J.B.S. Haldane in Britain and Sewall Wright in the United States. Their work contributed to the downfall of mutationism and, most important, provided a theoretical framework for the integration of genetics into Darwin’s theory of natural selection. Yet their work had a limited impact on contemporary biologists for several reasons—it was formulated in a mathematical language that most biologists could not understand; it was almost exclusively theoretical, with little empirical corroboration; and it was limited in scope, largely omitting many issues, such as speciation (the process by which new species are formed), that were of great importance to evolutionists.

A major breakthrough came in 1937 with the publication of Genetics and the Origin of Species by Theodosius Dobzhansky, a Russian-born American naturalist and experimental geneticist. Dobzhansky’s book advanced a reasonably comprehensive account of the evolutionary process in genetic terms, laced with experimental evidence supporting the theoretical argument. Genetics and the Origin of Species may be considered the most important landmark in the formulation of what came to be known as the synthetic theory of evolution, effectively combining Darwinian natural selection and Mendelian genetics. It had an enormous impact on naturalists and experimental biologists, who rapidly embraced the new understanding of the evolutionary process as one of genetic change in populations. Interest in evolutionary studies was greatly stimulated, and contributions to the theory soon began to follow, extending the synthesis of genetics and natural selection to a variety of biological fields.

The main writers who, together with Dobzhansky, may be considered the architects of the synthetic theory were the German-born American zoologist Ernst Mayr, the English zoologist Julian Huxley, the American paleontologist George Gaylord Simpson, and the American botanist George Ledyard Stebbins. These researchers contributed to a burst of evolutionary studies in the traditional biological disciplines and in some emerging ones—notably population genetics and, later, evolutionary ecology (seecommunity ecology). By 1950 acceptance of Darwin’s theory of evolution by natural selection was universal among biologists, and the synthetic theory had become widely adopted.

Molecular biology and Earth sciences

The most important line of investigation after 1950 was the application of molecular biology to evolutionary studies. In 1953 the American geneticist James Watson and the British biophysicist Francis Crick deduced the molecular structure of DNA (deoxyribonucleic acid), the hereditary material contained in the chromosomes of every cell’s nucleus. The genetic information is encoded within the sequence of nucleotides that make up the chainlike DNA molecules. This information determines the sequence of amino acid building blocks of protein molecules, which include, among others, structural proteins such as collagen, respiratory proteins such as hemoglobin, and numerous enzymes responsible for the organism’s fundamental life processes. Genetic information contained in the DNA can thus be investigated by examining the sequences of amino acids in the proteins.

In the mid-1960s laboratory techniques such as electrophoresis and selective assay of enzymes became available for the rapid and inexpensive study of differences among enzymes and other proteins. The application of these techniques to evolutionary problems made possible the pursuit of issues that earlier could not be investigated—for example, exploring the extent of genetic variation in natural populations (which sets bounds on their evolutionary potential) and determining the amount of genetic change that occurs during the formation of new species.

Comparisons of the amino acid sequences of corresponding proteins in different species provided quantitatively precise measures of the divergence among species evolved from common ancestors, a considerable improvement over the typically qualitative evaluations obtained by comparative anatomy and other evolutionary subdisciplines. In 1968 the Japanese geneticist Motoo Kimura proposed the neutrality theory of molecular evolution, which assumes that, at the level of the sequences of nucleotides in DNA and of amino acids in proteins, many changes are adaptively neutral; they have little or no effect on the molecule’s function and thus on an organism’s fitness within its environment. If the neutrality theory is correct, there should be a “molecular clock” of evolution; that is, the degree to which amino acid or nucleotide sequences diverge between species should provide a reliable estimate of the time since the species diverged. This would make it possible to reconstruct an evolutionary history that would reveal the order of branching of different lineages, such as those leading to humans, chimpanzees, and orangutans, as well as the time in the past when the lineages split from one another. During the 1970s and ’80s it gradually became clear that the molecular clock is not exact; nevertheless, into the early 21st century it continued to provide the most reliable evidence for reconstructing evolutionary history. (See belowThe molecular clock of evolution and The neutrality theory of molecular evolution.)

The laboratory techniques of DNA cloning and sequencing have provided a new and powerful means of investigating evolution at the molecular level. The fruits of this technology began to accumulate during the 1980s following the development of automated DNA-sequencing machines and the invention of the polymerase chain reaction (PCR), a simple and inexpensive technique that obtains, in a few hours, billions or trillions of copies of a specific DNA sequence or gene. Major research efforts such as the Human Genome Project further improved the technology for obtaining long DNA sequences rapidly and inexpensively. By the first few years of the 21st century, the full DNA sequence—i.e., the full genetic complement, or genome—had been obtained for more than 20 higher organisms, including human beings, the house mouse (Mus musculus), the rat Rattus norvegicus, the vinegar flyDrosophila melanogaster, the mosquito Anopheles gambiae, the nematode worm Caenorhabditis elegans, the malaria parasite Plasmodium falciparum, the mustard weed Arabidopsis thaliana, and the yeast Saccharomyces cerevisiae, as well as for numerous microorganisms. Additional research during this time explored alternative mechanisms of inheritance, including epigenetic modification (the chemical modification of specific genes or gene-associated proteins), that could explain an organism’s ability to transmit traits developed during its lifetime to its offspring.

The Earth sciences also experienced, in the second half of the 20th century, a conceptual revolution with considerable consequence to the study of evolution. The theory of plate tectonics, which was formulated in the late 1960s, revealed that the configuration and position of the continents and oceans are dynamic, rather than static, features of Earth. Oceans grow and shrink, while continents break into fragments or coalesce into larger masses. The continents move across Earth’s surface at rates of a few centimetres a year, and over millions of years of geologic history this movement profoundly alters the face of the planet, causing major climatic changes along the way. These previously unsuspected massive modifications of Earth’s past environments are, of necessity, reflected in the evolutionary history of life. Biogeography, the evolutionary study of plant and animal distribution, has been revolutionized by the knowledge, for example, that Africa and South America were part of a single landmass some 200 million years ago and that the Indian subcontinent was not connected with Asia until geologically recent times.

Ecology, the study of the interactions of organisms with their environments, has evolved from descriptive studies—“natural history”—into a vigorous biological discipline with a strong mathematical component, both in the development of theoretical models and in the collection and analysis of quantitative data. Evolutionary ecology (seecommunity ecology) is an active field of evolutionary biology; another is evolutionary ethology, the study of the evolution of animal behaviour. Sociobiology, the evolutionary study of social behaviour, is perhaps the most active subfield of ethology. It is also the most controversial, because of its extension to human societies.

The cultural impact of evolutionary theory

Scientific acceptance and extension to other disciplines

The theory of evolution makes statements about three different, though related, issues: (1) the fact of evolution—that is, that organisms are related by common descent; (2) evolutionary history—the details of when lineages split from one another and of the changes that occurred in each lineage; and (3) the mechanisms or processes by which evolutionary change occurs.

The first issue is the most fundamental and the one established with utmost certainty. Darwin gathered much evidence in its support, but evidence has accumulated continuously ever since, derived from all biological disciplines. The evolutionary origin of organisms is today a scientific conclusion established with the kind of certainty attributable to such scientific concepts as the roundness of Earth, the motions of the planets, and the molecular composition of matter. This degree of certainty beyond reasonable doubt is what is implied when biologists say that evolution is a “fact”; the evolutionary origin of organisms is accepted by virtually every biologist.

But the theory of evolution goes far beyond the general affirmation that organisms evolve. The second and third issues—seeking to ascertain evolutionary relationships between particular organisms and the events of evolutionary history, as well as to explain how and why evolution takes place—are matters of active scientific investigation. Some conclusions are well established. One, for example, is that the chimpanzee and the gorilla are more closely related to humans than is any of those three species to the baboon or other monkeys. Another conclusion is that natural selection, the process postulated by Darwin, explains the configuration of such adaptive features as the human eye and the wings of birds. Many matters are less certain, others are conjectural, and still others—such as the characteristics of the first living things and when they came about—remain completely unknown.

Since Darwin, the theory of evolution has gradually extended its influence to other biological disciplines, from physiology to ecology and from biochemistry to systematics. All biological knowledge now includes the phenomenon of evolution. In the words of Theodosius Dobzhansky, “Nothing in biology makes sense except in the light of evolution.”

The term evolution and the general concept of change through time also have penetrated into scientific language well beyond biology and even into common language. Astrophysicists speak of the evolution of the solar system or of the universe; geologists, of the evolution of Earth’s interior; psychologists, of the evolution of the mind; anthropologists, of the evolution of cultures; art historians, of the evolution of architectural styles; and couturiers, of the evolution of fashion. These and other disciplines use the word with only the slightest commonality of meaning—the notion of gradual, and perhaps directional, change over the course of time.

Toward the end of the 20th century, specific concepts and processes borrowed from biological evolution and living systems were incorporated into computational research, beginning with the work of the American mathematician John Holland and others. One outcome of this endeavour was the development of methods for automatically generating computer-based systems that are proficient at given tasks. These systems have a wide variety of potential uses, such as solving practical computational problems, providing machines with the ability to learn from experience, and modeling processes in fields as diverse as ecology, immunology, economics, and even biological evolution itself.

To generate computer programs that represent proficient solutions to a problem under study, the computer scientist creates a set of step-by-step procedures, called a genetic algorithm or, more broadly, an evolutionary algorithm, that incorporates analogies of genetic processes—for instance, heredity, mutation, and recombination—as well as of evolutionary processes such as natural selection

This article is a non-technical introduction to the subject. For the main encyclopedia article, see Evolution.

Evolution is the process of change in all forms of life over generations, and evolutionary biology is the study of how evolution occurs. Biological populations evolve through genetic changes that correspond to changes in the organisms' observable traits. Genetic changes include mutations, which are caused by damage or replication errors in organisms' DNA. As the genetic variation of a population drifts randomly over generations, natural selection gradually leads traits to become more or less common based on the relative reproductive success of organisms with those traits.

The age of the Earth is about 4.54 billion years.[1][2][3] The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[4][5][6] during the Eoarchean Era after geological crust started to solidify, following the earlier molten Hadean Eon. Microbial matfossils in 3.48 billion-year-old sandstone have been found in Western Australia.[7][8][9] Other early physical evidence of life includes graphite, a biogenic substance, in 3.7 billion-year-old metasedimentary rocks in western Greenland[10] and, in 2015, "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[11][12] According to one of the researchers, "If life arose relatively quickly on Earth ... then it could be common in the universe."[11] It is estimated that more than 99 percent of all species, amounting to over five billion species,[13] that ever lived on Earth are extinct.[14][15] Estimates on the number of Earth's current species range from 10 million to 14 million,[16] of which about 1.2 million have been documented and over 86 percent have not yet been described.[17] More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described.[18]

Evolution does not attempt to explain the origin of life (covered instead by abiogenesis), but it does explain how early lifeforms evolved into the complex ecosystem that we see today.[19] Based on the similarities between all present-day organisms, all life on Earth is assumed to have originated through common descent from a last universal ancestor from which all known species have diverged through the process of evolution.[20] All individuals have hereditary material in the form of genes received from their parents, which they pass on to any offspring. Among offspring there are variations of genes due to the introduction of new genes via random changes called mutations or via reshuffling of existing genes during sexual reproduction.[21][22] The offspring differs from the parent in minor random ways. If those differences are helpful, the offspring is more likely to survive and reproduce. This means that more offspring in the next generation will have that helpful difference and individuals will not have equal chances of reproductive success. In this way, traits that result in organisms being better adapted to their living conditions become more common in descendant populations.[21][22] These differences accumulate resulting in changes within the population. This process is responsible for the many diverse life forms in the world.

The forces of evolution are most evident when populations become isolated, either through geographic distance or by other mechanisms that prevent genetic exchange. Over time, isolated populations can branch off into new species.[23][24]

The majority of genetic mutations neither assist, change the appearance of, nor bring harm to individuals. Through the process of genetic drift, these mutated genes are neutrally sorted among populations and survive across generations by chance alone. In contrast to genetic drift, natural selection is not a random process because it acts on traits that are necessary for survival and reproduction.[25] Natural selection and random genetic drift are constant and dynamic parts of life and over time this has shaped the branching structure in the tree of life.[26]

The modern understanding of evolution began with the 1859 publication of Charles Darwin's On the Origin of Species. In addition, Gregor Mendel's work with plants helped to explain the hereditary patterns of genetics.[27] Fossil discoveries in paleontology, advances in population genetics and a global network of scientific research have provided further details into the mechanisms of evolution. Scientists now have a good understanding of the origin of new species (speciation) and have observed the speciation process in the laboratory and in the wild. Evolution is the principal scientific theory that biologists use to understand life and is used in many disciplines, including medicine, psychology, conservation biology, anthropology, forensics, agriculture and other social-cultural applications.

Simple overview[edit]

The main ideas of evolution may be summarized as follows:

  • Life forms reproduce and therefore have a tendency to become more numerous.
  • Factors such as predation and competition work against the survival of individuals.
  • Each offspring differs from their parent(s) in minor, random ways.
  • If these differences are beneficial, the offspring is more likely to survive and reproduce.
  • This makes it likely that more offspring in the next generation will have beneficial differences and fewer will have detrimental differences.
  • These differences accumulate over generations, resulting in changes within the population.
  • Over time, populations can split or branch off into new species.
  • These processes, collectively known as evolution, are responsible for the many diverse life forms seen in the world.

Natural selection[edit]

Main article: Natural selection

In the 19th century, natural history collections and museums were popular. The European expansion and naval expeditions employed naturalists, while curators of grand museums showcased preserved and live specimens of the varieties of life. Charles Darwin was an English graduate educated and trained in the disciplines of natural history. Such natural historians would collect, catalogue, describe and study the vast collections of specimens stored and managed by curators at these museums. Darwin served as a ship's naturalist on board HMS Beagle, assigned to a five-year research expedition around the world. During his voyage, he observed and collected an abundance of organisms, being very interested in the diverse forms of life along the coasts of South America and the neighboring Galápagos Islands.[28][29]

Darwin gained extensive experience as he collected and studied the natural history of life forms from distant places. Through his studies, he formulated the idea that each species had developed from ancestors with similar features. In 1838, he described how a process he called natural selection would make this happen.[30]

The size of a population depends on how much and how many resources are able to support it. For the population to remain the same size year after year, there must be an equilibrium, or balance between the population size and available resources. Since organisms produce more offspring than their environment can support, not all individuals can survive out of each generation. There must be a competitive struggle for resources that aid in survival. As a result, Darwin realised that it was not chance alone that determined survival. Instead, survival of an organism depends on the differences of each individual organism, or "traits," that aid or hinder survival and reproduction. Well-adapted individuals are likely to leave more offspring than their less well-adapted competitors. Traits that hinder survival and reproduction would disappear over generations. Traits that help an organism survive and reproduce would accumulate over generations. Darwin realised that the unequal ability of individuals to survive and reproduce could cause gradual changes in the population and used the term natural selection to describe this process.[31][32]

Observations of variations in animals and plants formed the basis of the theory of natural selection. For example, Darwin observed that orchids and insects have a close relationship that allows the pollination of the plants. He noted that orchids have a variety of structures that attract insects, so that pollen from the flowers gets stuck to the insects' bodies. In this way, insects transport the pollen from a male to a female orchid. In spite of the elaborate appearance of orchids, these specialised parts are made from the same basic structures that make up other flowers. In his book, Fertilisation of Orchids (1862), Darwin proposed that the orchid flowers were adapted from pre-existing parts, through natural selection.[33]

Darwin was still researching and experimenting with his ideas on natural selection when he received a letter from Alfred Russel Wallace describing a theory very similar to his own. This led to an immediate joint publication of both theories. Both Wallace and Darwin saw the history of life like a family tree, with each fork in the tree’s limbs being a common ancestor. The tips of the limbs represented modern species and the branches represented the common ancestors that are shared amongst many different species. To explain these relationships, Darwin said that all living things were related, and this meant that all life must be descended from a few forms, or even from a single common ancestor. He called this process descent with modification.[32]

Darwin published his theory of evolution by natural selection in On the Origin of Species in 1859. His theory means that all life, including humanity, is a product of continuing natural processes. The implication that all life on Earth has a common ancestor has met with objections from some religious groups. Their objections are in contrast to the level of support for the theory by more than 99 percent of those within the scientific community today.[35]

Natural selection is commonly equated with survival of the fittest, but this expression originated in Herbert Spencer's Principles of Biology in 1864, five years after Charles Darwin published his original works. Survival of the fittest describes the process of natural selection incorrectly, because natural selection is not only about survival and it is not always the fittest that survives.[36]

Source of variation[edit]

Darwins theory of natural selection laid the groundwork for modern evolutionary theory, and his experiments and observations showed that the organisms in populations varied from each other, that some of these variations were inherited, and that these differences could be acted on by natural selection. However, he could not explain the source of these variations. Like many of his predecessors, Darwin mistakenly thought that heritable traits were a product of use and disuse, and that features acquired during an organism's lifetime could be passed on to its offspring. He looked for examples, such as large ground feeding birds getting stronger legs through exercise, and weaker wings from not flying until, like the ostrich, they could not fly at all.[37] This misunderstanding was called the inheritance of acquired characters and was part of the theory of transmutation of species put forward in 1809 by Jean-Baptiste Lamarck. In the late 19th century this theory became known as Lamarckism. Darwin produced an unsuccessful theory he called pangenesis to try to explain how acquired characteristics could be inherited. In the 1880s August Weismann's experiments indicated that changes from use and disuse could not be inherited, and Lamarckism gradually fell from favor.[38]

The missing information needed to help explain how new features could pass from a parent to its offspring was provided by the pioneering genetics work of Gregor Mendel. Mendel's experiments with several generations of pea plants demonstrated that inheritance works by separating and reshuffling hereditary information during the formation of sex cells and recombining that information during fertilisation. This is like mixing different hands of playing cards, with an organism getting a random mix of half of the cards from one parent, and half of the cards from the other. Mendel called the information factors; however, they later became known as genes. Genes are the basic units of heredity in living organisms. They contain the information that directs the physical development and behavior of organisms.

Genes are made of DNA. DNA is a long molecule made up of individual molecules called nucleotides. Genetic information is encoded in the sequence of nucleotides, that make up the DNA, just as the sequence of the letters in words carries information on a page. The genes are like short instructions built up of the "letters" of the DNA alphabet. Put together, the entire set of these genes gives enough information to serve as an "instruction manual" of how to build and run an organism. The instructions spelled out by this DNA alphabet can be changed, however, by mutations, and this may alter the instructions carried within the genes. Within the cell, the genes are carried in chromosomes, which are packages for carrying the DNA. It is the reshuffling of the chromosomes that results in unique combinations of genes in offspring. Since genes interact with one another during the development of an organism, novel combinations of genes produced by sexual reproduction can increase the genetic variability of the population even without new mutations.[39] The genetic variability of a population can also increase when members of that population interbreed with individuals from a different population causing gene flow between the populations. This can introduce genes into a population that were not present before.[40]

Evolution is not a random process. Although mutations in DNA are random, natural selection is not a process of chance: the environment determines the probability of reproductive success. Evolution is an inevitable result of imperfectly copying, self-replicating organisms reproducing over billions of years under the selective pressure of the environment. The outcome of evolution is not a perfectly designed organism. The end products of natural selection are organisms that are adapted to their present environments. Natural selection does not involve progress towards an ultimate goal. Evolution does not strive for more advanced, more intelligent, or more sophisticated life forms.[41] For example, fleas (wingless parasites) are descended from a winged, ancestral scorpionfly, and snakes are lizards that no longer require limbs—although pythons still grow tiny structures that are the remains of their ancestor's hind legs.[42][43] Organisms are merely the outcome of variations that succeed or fail, dependent upon the environmental conditions at the time.

Rapid environmental changes typically cause extinctions.[44] Of all species that have existed on Earth, 99.9 percent are now extinct.[45] Since life began on Earth, five major mass extinctions have led to large and sudden drops in the variety of species. The most recent, the Cretaceous–Paleogene extinction event, occurred 66 million years ago.[46]

Genetic drift[edit]

Further information: Genetic drift

Genetic drift is a cause of allelic frequency change within populations of a species. Alleles are different variations of specific genes. They determine things like hair color, skin tone, eye color and blood type; in other words, all the genetic traits that vary between individuals. Genetic drift does not introduce new alleles to a population, but it can reduce variation within a population by removing an allele from the gene pool. Genetic drift is caused by random sampling of alleles. A truly random sample is a sample in which no outside forces affect what is selected. It is like pulling marbles of the same size and weight but of different colors from a brown paper bag. In any offspring, the alleles present are samples of the previous generations alleles, and chance plays a role in whether an individual survives to reproduce and to pass a sample of their generation onward to the next. The allelic frequency of a population is the ratio of the copies of one specific allele that share the same form compared to the number of all forms of the allele present in the population.[47]

Genetic drift affects smaller populations more than it affects larger populations.[48]

Hardy–Weinberg principle[edit]

The Hardy–Weinberg principle states that a large population in Hardy–Weinberg equilibrium will have no change in the frequency of alleles as generations pass.[49] It is impossible for a population of any considerable size to reach this equilibrium because of the five requirements that must be met. A population must be infinite in size. There must be a zero percent mutation rate between generations, because mutations can alter existing alleles or create new ones. There can be no immigration or emigration in the population, because individuals arriving and leaving directly change allelic frequencies. There can be no selective pressures of any kind on the population, meaning that no individual is more likely than any other to survive and reproduce. Finally, mating must be totally random, with all males (or females in some cases) being equally desirable mates. This ensures a true random mixing of alleles.[50]

A population that is in Hardy–Weinberg equilibrium is analogous to a deck of cards; no matter how many times the deck is shuffled, no new cards are added and no old ones are taken away. Cards in the deck represent alleles in a population’s gene pool.

Population bottleneck[edit]

A population bottleneck occurs when the population of a species is reduced drastically over a short period of time due to external forces.[51] In a true population bottleneck, the reduction does not favor any combination of alleles; it is totally random chance which individuals survive. A bottleneck can reduce or eliminate genetic variation from a population. Further drift events after the bottleneck event can also reduce the population's genetic diversity. The lack of diversity created can make the population at risk to other selective pressures.[52]

A common example of a population bottleneck is the Northern elephant seal. Due to excessive hunting throughout the 19th century, the population of the northern elephant seal was reduced to 30 individuals or less. They have made a full recovery, with the total number of individuals at around 100,000 and growing. The effects of the bottleneck are visible, however. The seals are more likely to have serious problems with disease or genetic disorders, because there is almost no diversity in the population.[53]

Founder effect[edit]

The founder effect occurs when a small group from one population splits off and forms a new population, often through geographic isolation. This new population's allelic frequency is probably different from the original population's, and will change how common certain alleles are in the populations. The founders of the population will determine the genetic makeup, and potentially the survival, of the new population for generations.[50]

One example of the founder effect is found in the Amish migration to Pennsylvania in 1744. Two of the founders of the colony in Pennsylvania carried the recessive allele for Ellis–van Creveld syndrome. Because the Amish tend to be religious isolates, they interbreed, and through generations of this practice the frequency of Ellis–van Creveld syndrome in the Amish people is much higher than the frequency in the general population.[54]

Modern synthesis[edit]

Further information: Modern synthesis (20th century)

The modern evolutionary synthesis is based on the concept that populations of organisms have significant genetic variation caused by mutation and by the recombination of genes during sexual reproduction. It defines evolution as the change in allelic frequencies within a population caused by genetic drift, gene flow between sub populations, and natural selection. Natural selection is emphasised as the most important mechanism of evolution; large changes are the result of the gradual accumulation of small changes over long periods of time.[55][56]

The modern evolutionary synthesis is the outcome of a merger of several different scientific fields to produce a more cohesive understanding of evolutionary theory. In the 1920s, Ronald Fisher, J.B.S. Haldane and Sewall Wright combined Darwin's theory of natural selection with statistical models of Mendelian genetics, founding the discipline of population genetics. In the 1930s and 1940s, efforts were made to merge population genetics, the observations of field naturalists on the distribution of species and sub species, and analysis of the fossil record into a unified explanatory model.[57] The application of the principles of genetics to naturally occurring populations, by scientists such as Theodosius Dobzhansky and Ernst Mayr, advanced the understanding of the processes of evolution. Dobzhansky's 1937 work Genetics and the Origin of Species helped bridge the gap between genetics and field biology by presenting the mathematical work of the population geneticists in a form more useful to field biologists, and by showing that wild populations had much more genetic variability with geographically isolated subspecies and reservoirs of genetic diversity in recessive genes than the models of the early population geneticists had allowed for. Mayr, on the basis of an understanding of genes and direct observations of evolutionary processes from field research, introduced the biological species concept, which defined a species as a group of interbreeding or potentially interbreeding populations that are reproductively isolated from all other populations. Both Dobzhansky and Mayr emphasised the importance of subspecies reproductively isolated by geographical barriers in the emergence of new species. The paleontologist George Gaylord Simpson helped to incorporate paleontology with a statistical analysis of the fossil record that showed a pattern consistent with the branching and non-directional pathway of evolution of organisms predicted by the modern synthesis.[55]

Evidence for evolution[edit]

Further information: Evidence of common descent

Scientific evidence for evolution comes from many aspects of biology and includes fossils, homologous structures, and molecular similarities between species' DNA.

Fossil record[edit]

Research in the field of paleontology, the study of fossils, supports the idea that all living organisms are related. Fossils provide evidence that accumulated changes in organisms over long periods of time have led to the diverse forms of life we see today. A fossil itself reveals the organism's structure and the relationships between present and extinct species, allowing paleontologists to construct a family tree for all of the life forms on Earth.[58]

Modern paleontology began with the work of Georges Cuvier. Cuvier noted that, in sedimentary rock, each layer contained a specific group of fossils. The deeper layers, which he proposed to be older, contained simpler life forms. He noted that many forms of life from the past are no longer present today. One of Cuvier’s successful contributions to the understanding of the fossil record was establishing extinction as a fact. In an attempt to explain extinction, Cuvier proposed the idea of "revolutions" or catastrophism in which he speculated that geological catastrophes had occurred throughout the Earth’s history, wiping out large numbers of species.[59] Cuvier's theory of revolutions was later replaced by uniformitarian theories, notably those of James Hutton and Charles Lyell who proposed that the Earth’s geological changes were gradual and consistent.[60] However, current evidence in the fossil record supports the concept of mass extinctions. As a result, the general idea of catastrophism has re-emerged as a valid hypothesis for at least some of the rapid changes in life forms that appear in the fossil records.

A very large number of fossils have now been discovered and identified. These fossils serve as a chronological record of evolution. The fossil record provides examples of transitional species that demonstrate ancestral links between past and present life forms.[61] One such transitional fossil is Archaeopteryx, an ancient organism that had the distinct characteristics of a reptile (such as a long, bony tail and conical teeth) yet also had characteristics of birds (such as feathers and a wishbone). The implication from such a find is that modern reptiles and birds arose from a common ancestor.[62]

Comparative anatomy[edit]

Further information: Convergent evolution and Divergent evolution

The comparison of similarities between organisms of their form or appearance of parts, called their morphology, has long been a way to classify life into closely related groups. This can be done by comparing the structure of adult organisms in different species or by comparing the patterns of how cells grow, divide and even migrate during an organism's development.

Taxonomy[edit]

Taxonomy is the branch of biology that names and classifies all living things. Scientists use morphological and genetic similarities to assist them in categorising life forms based on ancestral relationships. For example, orangutans, gorillas, chimpanzees, and humans all belong to the same taxonomic grouping referred to as a family—in this case the family called Hominidae. These animals are grouped together because of similarities in morphology that come from common ancestry (called homology).[63]

Strong evidence for evolution comes from the analysis of homologous structures: structures in different species that no longer perform the same task but which share a similar structure.[64] Such is the case of the forelimbs of mammals. The forelimbs of a human, cat, whale, and bat all have strikingly similar bone structures. However, each of these four species' forelimbs performs a different task. The same bones that construct a bat's wings, which are used for flight, also construct a whale's flippers, which are used for swimming. Such a "design" makes little sense if they are unrelated and uniquely constructed for their particular tasks. The theory of evolution explains these homologous structures: all four animals shared a common ancestor, and each has undergone change over many generations. These changes in structure have produced forelimbs adapted for different tasks.[65]

However, anatomical comparisons can be misleading, as not all anatomical similarities indicate a close relationship. Organisms that share similar environments will often develop similar physical features, a process known as convergent evolution. Both sharks and dolphins have similar body forms, yet are only distantly related—sharks are fish and dolphins are mammals. Such similarities are a result of both populations being exposed to the same selective pressures. Within both groups, changes that aid swimming have been favored. Thus, over time, they developed similar appearances (morphology), even though they are not closely related.[66]

Embryology[edit]

In some cases, anatomical comparison of structures in the embryos of two or more species provides evidence for a shared ancestor that may not be obvious in the adult forms. As the embryo develops, these homologies can be lost to view, and the structures can take on different functions. Part of the basis of classifying the vertebrate group (which includes humans), is the presence of a tail (extending beyond the anus) and pharyngeal slits. Both structures appear during some stage of embryonic development but are not always obvious in the adult form.[67]

Because of the morphological similarities present in embryos of different species during development, it was once assumed that organisms re-enact their evolutionary history as an embryo. It was thought that human embryos passed through an amphibian then a reptilian stage before completing their development as mammals. Such a reenactment, often called recapitulation theory, is not supported by scientific evidence. What does occur, however, is that the first stages of development are similar in broad groups of organisms.[68] At very early stages, for instance, all vertebrates appear extremely similar, but do not exactly resemble any ancestral species. As development continues, specific features emerge from this basic pattern.

Vestigial structures[edit]

Homology includes a unique group of shared structures referred to as vestigial structures. Vestigial refers to anatomical parts that are of minimal, if any, value to the organism that possesses them. These apparently illogical structures are remnants of organs that played an important role in ancestral forms. Such is the case in whales, which have small vestigial bones that appear to be remnants of the leg bones of their ancestors which walked on land.[69] Humans also have vestigial structures, including the ear muscles, the wisdom teeth, the appendix, the tail bone, body hair (including goose bumps), and the semilunar fold in the corner of the eye.[70]

Biogeography[edit]

Biogeography is the study of the geographical distribution of species. Evidence from biogeography, especially from the biogeography of oceanic islands, played a key role in convincing both Darwin and Alfred Russel Wallace that species evolved with a branching pattern of common descent.[71] Islands often contain endemic species, species not found anywhere else, but those species are often related to species found on the nearest continent. Furthermore, islands often contain clusters of closely related species that have very different ecological niches, that is have different ways of making a living in the environment. Such clusters form through a process of adaptive radiation where a single ancestral species colonises an island that has a variety of open ecological niches and then diversifies by evolving into different species adapted to fill those empty niches. Well-studied examples include Darwin's finches, a group of 13 finch species endemic to the Galápagos Islands, and the Hawaiian honeycreepers, a group of birds that once, before extinctions caused by humans, numbered 60 species filling diverse ecological roles, all descended from a single finch like ancestor that arrived on the Hawaiian Islands some 4 million years ago.[72] Another example is the Silversword alliance, a group of perennial plant species, also endemic to the Hawaiian Islands, that inhabit a variety of habitats and come in a variety of shapes and sizes that include trees, shrubs, and ground hugging mats, but which can be hybridised with one another and with certain tarweed species found on the west coast of North America; it appears that one of those tarweeds colonised Hawaii in the past, and gave rise to the entire Silversword alliance.[73]

Molecular biology[edit]

Every living organism (with the possible exception of RNAviruses) contains molecules of DNA, which carries genetic information. Genes are the pieces of DNA that carry this information, and they influence the properties of an organism. Genes determine an individual's general appearance and to some extent their behavior. If two organisms are closely related, their DNA will be very similar.[74] On the other hand, the more distantly related two organisms are, the more differences they will have. For example, brothers are closely related and have very similar DNA, while cousins share a more distant relationship and have far more differences in their DNA. Similarities in DNA are used to determine the relationships between species in much the same manner as they are used to show relationships between individuals. For example, comparing chimpanzees with gorillas and humans shows that there is as much as a 96 percent similarity between the DNA of humans and chimps. Comparisons of DNA indicate that humans and chimpanzees are more closely related to each other than either species is to gorillas.[75][76][77]

The field of molecular systematics focuses on measuring the similarities in these molecules and using this information to work out how different types of organisms are related through evolution. These comparisons have allowed biologists to build a relationship tree of the evolution of life on Earth.[78] They have even allowed scientists to unravel the relationships between organisms whose common ancestors lived such a long time ago that no real similarities remain in the appearance of the organisms.

Artificial selection[edit]

Artificial selection is the controlled breeding of domestic plants and animals. Humans determine which animal or plant will reproduce and which of the offspring will survive; thus, they determine which genes will be passed on to future generations. The process of artificial selection has had a significant impact on the evolution of domestic animals. For example, people have produced different types of dogs by controlled breeding. The differences in size between the Chihuahua and the Great Dane are the result of artificial selection. Despite their dramatically different physical appearance, they and all other dogs evolved from a few wolves domesticated by humans in what is now China less than 15,000 years ago.[79]

Artificial selection has produced a wide variety of plants. In the case of maize (corn), recent genetic evidence suggests that domestication occurred 10,000 years ago in central Mexico.[80][unreliable source?] Prior to domestication, the edible portion of the wild form was small and difficult to collect. Today The Maize Genetics Cooperation • Stock Center maintains a collection of more than 10,000 genetic variations of maize that have arisen by random mutations and chromosomal variations from the original wild type.[81]

In artificial selection the new breed or variety that emerges is the one with random mutations attractive to humans, while in natural selection the surviving species is the one with random mutations useful to it in its non-human environment. In both natural and artificial selection the variations are a result of random mutations, and the underlying genetic processes are essentially the same.[82] Darwin carefully observed the outcomes of artificial selection in animals and plants to form many of his arguments in support of natural selection.[83] Much of his book On the Origin of Species was based on these observations of the many varieties of domestic pigeons arising from artificial selection. Darwin proposed that if humans could achieve dramatic changes in domestic animals in short periods, then natural selection, given millions of years, could produce the differences seen in living things today.

Coevolution[edit]

Main article: Coevolution

Coevolution is a process in which two or more species influence the evolution of each other. All organisms are influenced by life around them; however, in coevolution there is evidence that genetically determined traits in each species directly resulted from the interaction between the two organisms.[74]

An extensively documented case of coevolution is the relationship between Pseudomyrmex, a type of ant, and the acacia, a plant that the ant uses for food and shelter. The relationship between the two is so intimate that it has led to the evolution of special structures and behaviors in both organisms. The ant defends the acacia against herbivores and clears the forest floor of the seeds from competing plants. In response, the plant has evolved swollen thorns that the ants use as shelter and special flower parts that the ants eat.[84] Such coevolution does not imply that the ants and the tree choose to behave in an altruistic manner. Rather, across a population small genetic changes in both ant and tree benefited each. The benefit gave a slightly higher chance of the characteristic being passed on to the next generation. Over time, successive mutations created the relationship we observe today.

Speciation[edit]

Main article: Speciation

Given the right circumstances, and enough time, evolution leads to the emergence of new species. Scientists have struggled to find a precise and all-inclusive definition of species. Ernst Mayr defined a species as a population or group of populations whose members have the potential to interbreed naturally with one another to produce viable, fertile offspring. (The members of a species cannot produce viable, fertile offspring with members of other species).[85] Mayr's definition has gained wide acceptance among biologists, but does not apply to organisms such as bacteria, which reproduce asexually.

Speciation is the lineage-splitting event that results in two separate species forming from a single common ancestral population.[31] A widely accepted method of speciation is called allopatric speciation. Allopatric speciation begins when a population becomes geographically separated.[64] Geological processes, such as the emergence of mountain ranges, the formation of canyons, or the flooding of land bridges by changes in sea level may result in separate populations. For speciation to occur, separation must be substantial, so that genetic exchange between the two populations is completely disrupted. In their separate environments, the genetically isolated groups follow their own unique evolutionary pathways. Each group will accumulate different mutations as well as be subjected to different selective pressures. The accumulated genetic changes may result in separated populations that can no longer interbreed if they are reunited.[31] Barriers that prevent interbreeding are either prezygotic (prevent mating or fertilisation) or postzygotic (barriers that occur after fertilisation). If interbreeding is no longer possible, then they will be considered different species.[86] The result of four billion years of evolution is the diversity of life around us, with an estimated 1.75 million different species in existence today.[24][87]

Usually the process of speciation is slow, occurring over very long time spans; thus direct observations within human life-spans are rare. However speciation has been observed in present-day organisms, and past speciation events are recorded in fossils.[88][89][90] Scientists have documented the formation of five new species of cichlid fishes from a single common ancestor that was isolated fewer than 5,000 years ago from the parent stock in Lake Nagubago.[91] The evidence for speciation in this case was morphology (physical appearance) and lack of natural interbreeding. These fish have complex mating rituals and a variety of colorations; the slight modifications introduced in the new species have changed the mate selection process and the five forms that arose could not be convinced to interbreed.[92]

Mechanism[edit]

The theory of evolution is widely accepted among the scientific community, serving to link the diverse specialty areas of biology.[35] Evolution provides the field of biology with a solid scientific base. The significance of evolutionary theory is summarised by Theodosius Dobzhansky as "nothing in biology makes sense except in the light of evolution."[93][94] Nevertheless, the theory of evolution is not static. There is much discussion within the scientific community concerning the mechanisms behind the evolutionary process. For example, the rate at which evolution occurs is still under discussion. In addition, there are conflicting opinions as to which is the primary unit of evolutionary change—the organism or the gene.

Rate of change[edit]

The "Paleontological Tree of the Vertebrates," from the 5th edition of The Evolution of Man (London, 1910) by Ernst Haeckel. The evolutionary history of species has been described as a tree, with many branches arising from a single trunk.
Darwin noted that orchids have complex adaptations to ensure pollination, all derived from basic floral parts.
Model of population bottleneck illustrates how alleles can be lost
In the founder effect, small new populations contain different allele frequencies from the parent population.
A bat is a mammal and its forearm bones have been adapted for flight.
There are numerous species of cichlids that demonstrate dramatic variations in morphology.